
Overview of Query Evaluation

Chapter 12
Sayyed Nezhadi

Query Evaluation

• How could we evaluate the following query?

– πDate(σR.SID=S.SID and Rating = 10 (R ✕ S))

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Schema for Examples

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000

pages.
• Sailors:

– Each tuple is 50 bytes long, 80 tuples per page, 500
pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Overview of Query Evaluation
• Plan: Tree of R.A. ops, with choice of alg for each op.

– Each operator typically implemented using a `pull’
interface: when an operator is `pulled’ for the next output
tuples, it `pulls’ on its inputs and computes them.

• Two main issues in query optimization:
– For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.
– How is the cost of a plan estimated?

• Ideally: Want to find best plan. Practically: Avoid
worst plans!

• We will study the System R approach.

Some Common Techniques
• Algorithms for evaluating relational operators

use some simple ideas extensively:
– Indexing: Can use WHERE conditions to retrieve

small set of tuples (selections, joins)
– Iteration: Sometimes, faster to scan all tuples even

if there is an index. (And sometimes, we can scan
the data entries in an index instead of the table
itself.)

– Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!

Statistics and Catalogs

• Need information about the relations and indexes
involved. Catalogs typically contain at least:
– # tuples (NTuples) and # pages (NPages) for each relation.
– # distinct key values (NKeys) and NPages for each index.
– Index height, low/high key values (Low/High) for each tree

index.
• Catalogs updated periodically.

– Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Access Paths
v An access path is a method of retrieving tuples:

§ File scan, or index that matches a selection (in the query)
v A tree index matches (a conjunction of) terms that

involve only attributes in a prefix of the search key.
§ E.g., Tree index on <a, b, c> matches the selection a=5

AND b=3, and a=5 AND b>6, but not b=3.
v A hash index matches (a conjunction of) terms that

has a term attribute = value for every attribute in the
search key of the index.
§ E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND

c=5; but it does not match b=3, or a=5 AND b=3, or a>5
AND b=3 AND c=5.

A Note on Complex Selections

• Selection conditions are first converted to
conjunctive normal form (CNF):
(day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)

• We only discuss case with no ORs; see text if you
are curious about the general case.

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

One Approach to Selections
• Find the most selective access path, retrieve tuples

using it, and apply any remaining terms that don’t
match the index:
– Most selective access path: An index or file scan that we

estimate will require the fewest page I/Os.
– Terms that match this index reduce the number of tuples

retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.

– Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree index
on day can be used; then, bid=5 and sid=3 must be checked
for each retrieved tuple. Similarly, a hash index on <bid,
sid> could be used; day<8/9/94 must then be checked.

Using an Index for Selections
• Cost depends on #qualifying tuples, and

clustering.
– Cost of finding qualifying data entries (typically

small) plus cost of retrieving records (could be large
w/o clustering).

– In example, assuming uniform distribution of
names, about 10% of tuples qualify (100 pages,
10000 tuples). With a clustered index on rname,
cost is little more than 100 I/Os; if unclustered, upto
10000 I/Os! SELECT *

FROM Reserves R
WHERE R.rname <= ‘C%’

Projection

• The expensive part is removing duplicates.

– SQL systems don’t remove duplicates unless the keyword

DISTINCT is specified in a query.

• Sorting Approach: Sort on <sid, bid> and remove duplicates.

(Can optimize this by dropping unwanted information while

sorting.)

• Hashing Approach: Hash on <sid, bid> to create partitions.

Load partitions into memory one at a time, build in-memory

hash structure, and eliminate duplicates.

• Using Indexes: If there is an index with both R.sid and R.bid

in the search key, may be cheaper to sort data entries!

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R

Join: Index Nested Loops

• If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.
– Cost: M + ((M*pR) * cost of finding matching S tuples)
– M=#pages of R, pR=# R tuples per page

• For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples depends on clustering.
– Clustered index: 1 I/O (typical), unclustered: upto 1 I/O per

matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Examples of Index Nested Loops

• Hash-index on sid of Sailors (as inner):
– Scan Reserves: 1000 page I/Os, 100*1000 tuples.
– For each Reserves tuple: 1.2 I/Os to get data entry in index,

plus 1 I/O to get (the exactly one) matching Sailors tuple.
Total: (1+1.2)*100000=220,000 I/Os.

• Hash-index on sid of Reserves (as inner):
– Scan Sailors: 500 page I/Os, 80*500 tuples.
– For each Sailors tuple: 1.2 I/Os to find index page with data

entries, plus cost of retrieving matching Reserves tuples.
Assuming uniform distribution, 2.5 reservations per sailor
(100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os
depending on whether the index is clustered.

Join: Sort-Merge (R S)

• Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.
– Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

– Then resume scanning R and S.
• R is scanned once; each S group is scanned once per

matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

!"
i=j

Example of Sort-Merge Join

• Cost: M log M + N log N + (M+N)
– The cost of scanning, M+N
– With 35, 100 or 300 buffer pages, both Reserves and Sailors

can be sorted in 2 passes; total join cost: 7500, how?

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

